Welcome to adsorption_isotherm_fitting’s documentation!¶
Installation¶
Docker¶
docker pull dejac001/isotherm-fitting-users:0.0.4
docker run -ti -v $PWD:/home/pyomo/shared/ dejac001/isotherm-fitting-users:0.0.4 # run interactively inside container (ubuntu-based)
Singularity¶
module load singularity
singularity pull docker://dejac001/isotherm-fitting-users:0.0.4
mv isotherm-fitting-users_0.0.4.sif /path/to/shared/directory/isotherm-fitting-users_0.0.4.sif
singularity exec -B $PWD:/home/pyomo/shared /path/to/shared/directory/isotherm-fitting-users_0.0.4.sif python3 path/to/input/file.py
Scipy Only¶
pip3 install Pyomo chem-util matplotlib pandas numpy realgas>=1.0.2
python3 -m pip3 install https://github.com/dejac001/adsorption_isotherm_fitting/archive/v0.0.4.tar.gz
CO2/N2 Unary Example¶
In this example, we fit temperature-dependent unary data from [PXSL14].
Initialization¶
We first load the necessary packages
>>> import pyomo.environ as pyo
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from isotherm_models.unaryisotherm import LangmuirUnary
CO2¶
We first get the data from the data file
>>> data = pd.read_csv('data_sets/CO2_BEA.csv')
Using pandas, we can easily take a peek at the data we have input from our .csv file
>>> data.head()
P [atm] Q [mmol/g] T [K] adsorbate
0 0.029814 0.096491 273.0 CO2
1 0.055856 0.175439 273.0 CO2
2 0.109177 0.328947 273.0 CO2
3 0.246821 0.719298 273.0 CO2
4 0.313781 0.903509 273.0 CO2
Before solving the model, we convert the partial pressures to si units
>>> P_i = data['P [atm]']*101325 # convert to Pa -- si units
so that we can create the model
>>> co2_model = LangmuirUnary(P_i, data['Q [mmol/g]'], data['T [K]'], name='CO2')
and solve it
>>> co2_model.solve()
We then take a look at the results
>>> co2_model.get_R2_pyomo()
0.99796
>>> co2_model.get_objective()
0.007229102
>>> co2_model.dH_i.display()
dH_i : Size=1
Key : Value
None : -20780.90809523844
>>> co2_model.q_mi.display()
q_mi : Size=1
Key : Value
None : 8.95582798469325
>>> co2_model.k_i_inf.display()
k_i_inf : Size=1
Key : Value
None : 3.8656918601559114e-10
And save the results to a file
>>> fig = plt.figure()
>>> fig, ax = co2_model.plot_unary(fig=fig)
>>> _ = ax.legend()
>>> fig.savefig('docs/source/CO2_example.png')
which looks like

N2¶
We repeat a similar approach for the N2 isotherms, first formatting the data for input to the model
>>> data = pd.read_csv('data_sets/N2_BEA.csv')
Using pandas, we can easily take a peek at the data we have input from our .csv file
>>> data.head()
P [atm] Q [mmol/g] T [K] adsorbate
0 0.525470 0.070175 303.0 N2
1 0.592387 0.078947 303.0 N2
2 0.656824 0.083333 303.0 N2
3 0.722502 0.092105 303.0 N2
4 0.788179 0.100877 303.0 N2
Before solving the model, we convert the partial pressures to si units
>>> P_i = data['P [atm]']*101325 # convert to Pa -- si units
Instantiating (creating) the model
>>> n2_model = LangmuirUnary(P_i, data['Q [mmol/g]'], data['T [K]'], name='N2')
Solving it
>>> n2_model.solve()
We then take a look at the results
>>> n2_model.get_R2_pyomo()
0.99262
>>> n2_model.get_objective()
0.00194249
>>> n2_model.dH_i.display()
dH_i : Size=1
Key : Value
None : -12557.526993112784
>>> n2_model.q_mi.display()
q_mi : Size=1
Key : Value
None : 0.45280441671269905
>>> n2_model.k_i_inf.display()
k_i_inf : Size=1
Key : Value
None : 2.412336128388879e-08
And save the results to a file
>>> fig = plt.figure()
>>> fig, ax = n2_model.plot_unary(fig=fig)
>>> _ = ax.legend()
>>> fig.savefig('docs/source/N2_example.png')
which looks like

Comparison to scipy¶
>>> import numpy as np
>>> popt, pcov = co2_model.solve_scipy()
>>> popt
array([ 3.71939309, -10.14817759, -7.28715595])
>>> popt - np.array(list(map(pyo.value, [co2_model.q_mi_star, co2_model.A_i, co2_model.H_i_star])))
array([3.28355311e-05, 3.67969745e-05, 3.88858220e-05])
H2S/CH4 Example¶
In this example, we fit temperature-dependent binary data from [STS15] and compare the results to using the extended Langmuir combining rule.
Initialization¶
First, we import the necessary packages
>>> import pyomo.environ as pyo
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from isotherm_models.unaryisotherm import LangmuirUnary
>>> from isotherm_models.binaryisotherm import BinaryLangmuir
First, we grab the data for adsorption of H2S:
>>> df = pd.read_csv('data_sets/CH4_H2S_MFI_binary_with_fugacity.csv')
>>> hat_f_i, hat_f_j, q_i, T = df['fugacity H2S [Pa]'], df['fugacity CH4 [Pa]'], df['Q H2S [mmol/g]'], df['T [K]']
Here, we are going to fit the loading of H2S, q_i
, as a function of the (mixture)
fugacities of H2S, hat_f_i
, and CH4, hat_f_j
.
Since the data file includes both binary and unary data (including CH4 unary data where H2S is not present),
we need to find the data points where H2S is present.
We can do this with a list comprehension as below
>>> all_points = [i for i in range(len(q_i)) if q_i[i] > 0.]
Now, we can create a model with all of these points. We choose the isotherm_models.binaryisotherm.BinaryLangmuir
model.
>>> h2s_binary = BinaryLangmuir(
... [hat_f_i[i] for i in all_points],
... [hat_f_j[i] for i in all_points],
... [q_i[i] for i in all_points],
... [T[i] for i in all_points],
... name='H2S_binary'
... )
Similarly, we can find the indices of points where only H2S is present (i.e., the unary points for H2S), using the following code
>>> unary_points = [i for i in range(len(q_i)) if hat_f_j[i] < 1e-12]
>>> f_i = [hat_f_i[i] for i in unary_points]
And we can create a unary model as
>>> h2s_unary = LangmuirUnary(
... f_i,
... [q_i[i] for i in unary_points],
... [T[i] for i in unary_points],
... name='H2S_unary'
... )
We can undertake a similar procedure for CH4, as below
>>> df = pd.read_csv('data_sets/CH4_H2S_MFI_binary_with_fugacity.csv')
>>> hat_f_i, hat_f_j, q_i, T = df['fugacity CH4 [Pa]'], df['fugacity H2S [Pa]'], df['Q CH4 [mmol/g]'], df['T [K]']
>>> all_points = [i for i in range(len(q_i)) if q_i[i] > 0.]
>>> unary_points = [i for i in range(len(q_i)) if hat_f_j[i] < 1e-12]
>>> f_i = [hat_f_i[i] for i in unary_points]
>>> ch4_unary = LangmuirUnary(f_i,
... [q_i[i] for i in unary_points],
... [T[i] for i in unary_points],
... name='CH4_unary'
... )
>>> ch4_binary = BinaryLangmuir(
... [hat_f_i[i] for i in all_points],
... [hat_f_j[i] for i in all_points],
... [q_i[i] for i in all_points],
... [T[i] for i in all_points],
... name='CH4_binary'
... )
Solution¶
We solve the ch4_unary model first
>>> ch4_unary.solve()
and observe that the fit is quite good.
>>> ch4_unary.get_R2_pyomo()
0.9998
>>> ch4_unary.get_objective()
0.0007123352658190
We can take a look at the final parameters that were obtained
>>> ch4_unary.dH_i.display()
dH_i : Size=1
Key : Value
None : -20205.7398278234
>>> ch4_unary.q_mi.display()
q_mi : Size=1
Key : Value
None : 2.7226241284913613
>>> ch4_unary.k_i_inf.display()
k_i_inf : Size=1
Key : Value
None : 6.61203298602151e-10
Then we can do the same thing with the H2S unary model
>>> h2s_unary.solve()
>>> h2s_unary.get_R2_pyomo()
0.998700
>>> h2s_unary.get_objective()
0.0053414
Alternatively, we can display results at once
>>> h2s_unary.display_results()
R2 : Size=1
Key : Value
None : 0.9987002690496689
objective : Size=1, Index=None, Active=True
Key : Active : Value
None : True : 0.0053414186202173485
H_i_star : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : -10.976064382768586 : None : False : False : Reals
A_i : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : -7.365904878303015 : None : False : False : Reals
q_mi_star : Size=1, Index=None
Key : Lower : Value : Upper : Fixed : Stale : Domain
None : None : 1.0109486926682547 : None : False : False : Reals
q_mi : Size=1
Key : Value
None : 3.1127110247255563
k_i_inf : Size=1
Key : Value
None : 1.6091644633767268e-10
dH_i : Size=1
Key : Value
None : -31300.464752469943
Before solving the binary models, it is useful to have a good initial guess. One option is to initialize the binary variables from the Langmuir combining rule
>>> h2s_binary.H_i_star = pyo.value(h2s_unary.H_i_star)
>>> h2s_binary.A_i = pyo.value(h2s_unary.A_i)
>>> h2s_binary.q_mi_star = pyo.value(h2s_unary.q_mi_star)
>>> h2s_binary.A_j = pyo.value(ch4_unary.A_i)
>>> h2s_binary.H_j_star = pyo.value(ch4_unary.H_i_star)
>>> ch4_binary.H_i_star = pyo.value(ch4_unary.H_i_star)
>>> ch4_binary.A_i = pyo.value(ch4_unary.A_i)
>>> ch4_binary.q_mi_star = pyo.value(ch4_unary.q_mi_star)
>>> ch4_binary.A_j = pyo.value(h2s_unary.A_i)
>>> ch4_binary.H_j_star = pyo.value(h2s_unary.H_i_star)
And then solve them using the usual syntax
>>> h2s_binary.solve()
>>> ch4_binary.solve()
>>> h2s_binary.get_R2_pyomo()
0.9988281256
>>> h2s_binary.get_objective()
0.0186995038
>>> ch4_binary.get_R2_pyomo()
0.999329631
>>> ch4_binary.get_objective()
0.007515807
which demonstrates that the fits are again quite good. It is of interest to compare the binary fit parameters to the unary parameters
>>> pyo.value(h2s_binary.H_i_star)
-11.073113
>>> pyo.value(h2s_unary.H_i_star)
-10.97606
>>> pyo.value(h2s_binary.q_mi_star)
1.0189875
>>> pyo.value(h2s_unary.q_mi_star)
1.0109486
>>> pyo.value(h2s_binary.A_i)
-7.32572
>>> pyo.value(h2s_unary.A_i)
-7.36590
We can also plot all the results to a figure, and save it to a file
>>> fig = plt.figure()
>>> fig, ax = h2s_unary.plot_comparison_dimensionless(fig=fig, color='red', marker='o', markerfacecolor='None', label='H2S unary')
>>> fig, ax = ch4_unary.plot_comparison_dimensionless(fig=fig, ax=ax, color='blue', marker='x', markerfacecolor='None', label='CH4 unary')
>>> fig, ax = h2s_binary.plot_comparison_dimensionless(fig=fig, ax=ax, color='purple', marker='d', markerfacecolor='None', label='H2S binary')
>>> fig, ax = ch4_binary.plot_comparison_dimensionless(fig=fig, ax=ax, color='cyan', marker='s', markerfacecolor='None', label='CH4 binary')
>>> _ = ax.legend()
>>> fig.savefig('docs/source/h2s_ch4_example.png')
Which looks like

Having fit the isotherms, we can now evaluate them at arbitrary fugacities and temperatures. We get the same answer whether we use units or dimensional quantities
>>> pyo.value(h2s_unary.eval_pyomo(h2s_unary.f_ref, h2s_unary.T_ref) - h2s_unary.q_ref*h2s_unary.eval_dimensionless_pyomo(1., 1.))
0.0
>>> pyo.value(
... h2s_binary.eval_pyomo(h2s_binary.f_ref, h2s_binary.f_ref, h2s_binary.T_ref)
... - h2s_binary.q_ref*h2s_binary.eval_dimensionless_pyomo(1., 1., 1.)
... )
0.0
Comparison to scipy¶
>>> import numpy as np
>>> popt, pcov = h2s_binary.solve_scipy()
>>> popt
array([ 1.01898639, -11.07321779, -8.15011325, -7.32582652,
-7.11673647])
>>> popt - np.array(list(map(pyo.value,
... [h2s_binary.q_mi_star, h2s_binary.H_i_star, h2s_binary.H_j_star, h2s_binary.A_i, h2s_binary.A_j])))
array([-1.12501256e-06, -1.04698086e-04, -1.76342848e-04, -1.04982550e-04,
-1.81042032e-04])
>>> h2s_binary.get_R2_scipy()
0.998828
which is nearly the same as the pyomo/ipopt result.
Unary Isotherms¶
Langmuir¶
The temperature-dependent unary Langmuir isotherm is expressed as
where \(f_i\), is the fugacity of component i, can be calculated assuming ideal gas
or, using the RealGas package to calculate \(\phi_i\) from \(y_i,P,T\) data,
An Arrhenius relationship for \(k_i\) is assumed as
Introducing the dimensionless parameters
The variables to be fit in dimensionless form are
So that Equation (1) becomes
Modules¶
-
class
isotherm_models.unaryisotherm.
UnaryIsotherm
(f_i, q_i, T, q_ref=None, f_ref=None, T_ref=None, **kwargs)[source]¶ Base class for Unary Isotherms
- Parameters
f_i (list) – fugacities of component i (can be calculated assuming ideal gas or real gas)
q_i (list) – loadings of component i
T (list, optional) – temperatures in [K], defaults to None
q_ref (float, optional) – reference loading, defaults to maximum loading in
q_i
f_ref (float, optional) – reference fugacity, defaults to maximum fugacity in
f_j
T_ref (float, optional) – reference temperature, defaults to maximum temperature in
T
points (list, derived from input) – state points at which a pressure and temperature are provided
f_i_star (list, derived) – dimensionless fugacitities, calculated by Equation (3)
theta (list, derived) – dimensionless loadings, calculated by Equation (2)
T_star (list, derived) – dimensionless temperatures, calculated by Equation (4)
theta_calc (pyo.Var, derived from input) – calculated dimensionless at each state point
objective (pyo.Objective, derived from input) – objective function to be minimized for isotherm fitting, calculated from
isotherm_models.unaryisotherm.UnaryIsotherm.objective_rule_pyomo()
R2 (pyo.Expression, derived) – coefficient of determination, see
isotherm_models.unaryisotherm.UnaryIsotherm.R2_rule()
q_calc (pyo.Expression, derived) – calculated loading in units
-
objective_rule_pyomo
()[source]¶ Sum of squared errors between calculated loading and predicted loading
\[\sum_i \left(\theta_i^{\text{raw}}-\theta_i^{\text{calc}}\right)^2\]where raw denotes the raw data obtained by experiment or molecular simulation and calc denotes the data calculated from the isotherm function
-
class
isotherm_models.unaryisotherm.
LangmuirUnary
(*args, **kwargs)[source]¶ Langmuir isotherm for unary mixture
Isotherm is Equation (1). Dimensionless isotherm is Equation (8). Dimensionless variables to be fit are \(H_i^\star\), \(A_i\), and \(q_{\text{m},i}^\star\), as defined in Equations (5), (6), and (7), respectively.
- Parameters
H_i_star (pyo.Var) – \(H_i^\star\), dimensionless heat of adsorption of component i
A_i (pyo.Var) – \(A_i\), dimensionless langmuir constant in logarithmic space
q_mi_star (pyo.Var) – \(q_{\text{m}i}^\star\), dimensionless saturation loading
q_mi (pyo.Expression) – langmuir saturaiton loading
k_i_inf (pyo.Expression) – langmuir adsorption constant independent of temperature
dH_i (pyo.Expression) – heat of adsorption of component i
-
dimensionless_isotherm_expression
(point)[source]¶ Dimensionless isotherm expression, see Equation (8)
-
initial_guess_A_i
()[source]¶ Initial guess for \(A_i\) variable
Todo
Come up with logical initial guess
-
initial_guess_H_i_star
()[source]¶ Initial guess for \(H_i^\star\) variable
This value of 10 corresponds to an absolute value for heat of adsorption of \(10RT\) which is approximately 25 kJ/mol
-
initial_guess_q_mi_star
()[source]¶ Initial guess for \(q_mi^\star\) variable
If \(q_\text{ref}\) is chosen to be the saturation loading, \(q_mi^\star\) will be 1. Thus, we return 1 as initial guess
Binary Isotherms¶
Binary Langmuir¶
Arrhenius relationships are used for \(k_i\) and \(k_j\),
and dimensionless variables are used as
illustrated in isotherm_models.unaryisotherm.LangmuirUnary
Note
This isotherm is not equivalent to the conventional extended langmuir isotherm, because both \(k_i\) and \(k_j\) are fit simultaneously to binary data.
For completeness, the relationships are repeated for the binary case below
The dimensionless parameters \(\theta_i\) and \(T^\star\) are calculated as the unary case, as shown in Equations (2) and (4), respectively. The other dimensionless parameters are
The dimensionless variables to be fit include \(H_i^\star\), \(q_{\text{m},i}^\star\), \(A_i\), \(H_j^\star\), \(q_{\text{m},j}^\star\), and \(A_j\). The former three (\(H_i^\star\), \(q_{\text{m},i}^\star\), and \(A_i\)) have the same expression as the unary case, as shown in Equations (5), (6), and (7), respectively. The latter two are expressed as
So that Equation (9) becomes
Modules¶
-
class
isotherm_models.binaryisotherm.
BinaryIsotherm
(hat_f_i, hat_f_j, q_i, T, f_ref=None, **kwargs)[source]¶ Base class for Binary Isotherms, inherits from UnaryIsotherm
The following additional dimensionless variables are used in computations
- Parameters
hat_f_j (list) – mixture fugacities of component i
hat_f_j – mixture fugacities of component j
q_i (list) – loadings of component i
T (list, optional) – temperatures in [K], defaults to None
points (list, derived from input) – state points at which a pressure and temperature are provided
hat_f_i_star (list, derived) – dimensionless fugacitities of component i, calculated by Equation (10)
hat_f_j_star (list, derived) – dimensionless fugacitities of component j, calculated by Equation (11)
theta (list, derived) – dimensionless loadings, calculated by Equation (2)
T_star (list, derived) – dimensionless temperatures, calculated by Equation (4)
theta_calc (pyo.Var, derived from input) – calculated dimensionless at each state point
objective (pyo.Objective, derived from input) – objective function to be minimized for isotherm fitting, calculated from
isotherm_models.unaryisotherm.UnaryIsotherm.objective_rule_pyomo()
R2 (pyo.Expression, derived) – coefficient of determination, see
isotherm_models.unaryisotherm.UnaryIsotherm.R2_rule()
q_calc (pyo.Expression, derived) – calculated loading in units
unary_points (list, derived) – points where only i is present, derived from where \(\hat{f}_j < 1\times10^{-12}\)
-
class
isotherm_models.binaryisotherm.
BinaryLangmuir
(*args, **kwargs)[source]¶ Temperature-dependent extended unary Langmuir isotherm, expressed as
Isotherm is Equation (9). Dimensionless isotherm is Equation (14). Dimensionless variables to be fit are \(H_i^\star\), \(A_i\), \(q_{\text{m},i}^\star\), \(H_j_star\), and \(A_j\), as defined in Equations (5), (6), (7), (12), and (13), respectively.
- Parameters
H_i_star (pyo.Var) – \(H_i^\star\), dimensionless heat of adsorption of component i
A_i (pyo.Var) – \(A_i\), dimensionless langmuir constant in logarithmic space
H_j_star (pyo.Var) – \(H_j^\star\), dimensionless heat of adsorption of component j
A_j (pyo.Var) – \(A_j\), dimensionless langmuir constant in logarithmic space
q_mi_star (pyo.Var) – \(q_{\text{m},i}^\star\), dimensionless saturation loading
q_mi (pyo.Expression) – langmuir saturation loading
k_i_inf (pyo.Expression) – langmuir adsorption constant independent of temperature
dH_i (pyo.Expression) – heat of adsorption of component i
k_j_inf (pyo.Expression) – langmuir adsorption constant independent of temperature
dH_j (pyo.Expression) – heat of adsorption of component j
-
dimensionless_isotherm_expression
(point)[source]¶ Dimensionless isotherm expression, see Equation (14)
Adsorption Equilibria Rules¶
For gases and their mixtures, the rules, limits, and consistency tests are [TM88]
Unary isotherms should reduce to Henry’s law at the limit of zero pressure.
In spite of incorrect limits at zero pressure, both the Toth and DR equations are accurate for calculating spreading pressure provided the pressure is sufficiently high.
At fixed temperature and pressure, thermodynamically consistent \(x\)-\(y\) diagrams intersect each other at least once. This can be derived by considering the Gibbs adsorption isotherm at constant spreading pressure.
Mixed gas isotherms should display continuity with single-gas isotherms. That is,
\[\lim_{y_i\to 1} q_\text{t} = q_i \;(\text{constant}\; P, T)\]where \(q_\text{t}=\sum_iq_i\) is the total loading. Discontinuities generate inaccurate values of adsorbate vapor pressure that lower the quality of calculations of mixed-gas adsorption.
Isothermal selectivity curves for different vapor compositions should intersect at the limit of zero pressure.
Activity coefficients in the adsorbed phase are functions of spreading pressure as well as composition.
Imperfections in the gas phase led to corrections in fugacity that are small compared to the effect of nonidealities in the adsorbed phase. In most cases, vapor-phase imperfections may be ignored unless the pressure is above 500 kPa and experimental error is less than a few percent.
Real Adsorbed Solution Theory¶
Todo
implement this into the code
The Gibbs adsorption isotherm is
where \(a\) is the surface area per mole of adsorbate, \(\Pi\) is the spreading pressure, \(x_i\) is the adsorbed mole fraction of component i, and \(\mu_i\) is the adsorbed-phase chemical potential of component i.
For change in equilibrium conditions,
where \(\hat{f}_i^\text{g}\) is the fugacity of component i in the gas phase. And the substituting surface area of the adsorbent is
where \(q_i\) is the loading of component i. Substituting Equations (2) and (3) into Equation (1) yields
If we have a good description of the multicomponent isotherms,
where \(F\) is an isotherm function, Equation (4) can be simplified to
where \(f_i^\prime\) is a dummy variable for integration.
Data Sets¶
CO2 and N2 on BEA¶
Experiment from [PXSL14]
P [atm] |
Q [mmol/g] |
T [K] |
adsorbate |
0.5254701189156284 |
0.07017543859649145 |
N2 |
|
0.5923867910171959 |
0.0789473684210531 |
N2 |
|
0.6568240613926388 |
0.08333333333333348 |
N2 |
|
0.7225015761212199 |
0.09210526315789469 |
N2 |
|
0.788179090849801 |
0.10087719298245634 |
N2 |
|
0.8526163612252438 |
0.10526315789473673 |
N2 |
|
0.9195330333268112 |
0.11403508771929838 |
N2 |
|
0.9988401921780905 |
0.1184210526315792 |
N2 |
|
0.41270462401356545 |
0.06140350877192979 |
N2 |
|
0.47590273701602204 |
0.06578947368421062 |
N2 |
P [atm] |
Q [mmol/g] |
T [K] |
adsorbate |
0.02981369160199132 |
0.09649122807017552 |
CO2 |
|
0.055855562077436444 |
0.17543859649122817 |
CO2 |
|
0.10917737342116132 |
0.3289473684210531 |
CO2 |
|
0.24682058305615331 |
0.7192982456140355 |
CO2 |
|
0.3137807343637904 |
0.9035087719298249 |
CO2 |
|
0.3832192004174003 |
1.0877192982456143 |
CO2 |
|
0.45017500380443043 |
1.254385964912281 |
CO2 |
|
0.5171318941716123 |
1.4254385964912284 |
CO2 |
|
0.5828463662253526 |
1.5833333333333337 |
CO2 |
|
0.6497989086719275 |
1.7368421052631582 |
CO2 |
|
0.6683960520880888 |
1.7763157894736845 |
CO2 |
|
0.6894736842105261 |
1.8245614035087723 |
CO2 |
|
0.7328670188482358 |
1.9166666666666672 |
CO2 |
|
0.8196504271831995 |
2.0877192982456148 |
CO2 |
|
0.9113904650101088 |
2.2587719298245617 |
CO2 |
|
0.9994075958173001 |
2.4078947368421058 |
CO2 |
|
0.15004021826561445 |
0.21052631578947345 |
CO2 |
|
0.21573729863692678 |
0.29824561403508776 |
CO2 |
|
0.2801941346551011 |
0.38157894736842124 |
CO2 |
|
0.34464988369312377 |
0.4605263157894739 |
CO2 |
|
0.4103447901041326 |
0.5394736842105265 |
CO2 |
|
0.4785190982412659 |
0.6228070175438596 |
CO2 |
|
0.5429759342594404 |
0.7061403508771931 |
CO2 |
|
0.6086686667101457 |
0.7763157894736845 |
CO2 |
|
0.6731244157481683 |
0.8552631578947372 |
CO2 |
|
0.7375779908258874 |
0.9254385964912284 |
CO2 |
|
0.8020326528837582 |
1.0000000000000002 |
CO2 |
|
0.8677253853344638 |
1.0701754385964914 |
CO2 |
|
0.9321789604121826 |
1.1403508771929827 |
CO2 |
|
0.9656438183438771 |
1.1710526315789478 |
CO2 |
|
0.9991108502358745 |
1.210526315789474 |
CO2 |
|
0.08434205091415034 |
0.1184210526315792 |
CO2 |
|
0.13265397073849425 |
0.05701754385964941 |
CO2 |
|
0.10539142155264239 |
0.052631578947368585 |
CO2 |
|
0.0595360768712363 |
0.02631578947368407 |
CO2 |
|
0.20948933672471134 |
0.08771929824561386 |
CO2 |
|
0.26154155525120115 |
0.1184210526315792 |
CO2 |
|
0.3297017326463618 |
0.14473684210526327 |
CO2 |
|
0.39414552490271526 |
0.17543859649122817 |
CO2 |
|
0.4610676319050413 |
0.20614035087719307 |
CO2 |
|
0.5267484075740776 |
0.2280701754385963 |
CO2 |
|
0.5911911128502791 |
0.2543859649122808 |
CO2 |
|
0.6581132198526054 |
0.2850877192982457 |
CO2 |
|
0.7225548381486553 |
0.3070175438596494 |
CO2 |
|
0.7869986304050085 |
0.3377192982456143 |
CO2 |
|
0.8539196504271831 |
0.3640350877192984 |
CO2 |
|
0.9196004260962194 |
0.38596491228070207 |
CO2 |
|
0.9989141068284091 |
0.4166666666666665 |
CO2 |
H2S and CH4 on MFI¶
Molecular simulation from [STS15],
P [bar] |
Q [mmol/g] |
d Q [mmol/g] |
adsorbate |
T [K] |
0.001 |
0.01 |
0.0003 |
H2S |
298 |
0.01 |
0.098 |
0.001 |
H2S |
298 |
0.1 |
0.90 |
0.01 |
H2S |
298 |
0.3 |
1.91 |
0.01 |
H2S |
298 |
0.5 |
2.28 |
0.01 |
H2S |
298 |
2.61 |
0.01 |
H2S |
298 |
|
1.5 |
2.742 |
0.004 |
H2S |
298 |
2 |
2.810 |
0.005 |
H2S |
298 |
3 |
2.90 |
0.01 |
H2S |
298 |
4 |
2.95 |
0.01 |
H2S |
298 |
5 |
2.983 |
0.004 |
H2S |
298 |
6 |
3.010 |
0.003 |
H2S |
298 |
7 |
3.030 |
0.004 |
H2S |
298 |
8 |
3.050 |
0.004 |
H2S |
298 |
9 |
3.064 |
0.004 |
H2S |
298 |
10 |
3.079 |
0.003 |
H2S |
298 |
0.001 |
0.00226 |
0.00002 |
H2S |
343 |
0.01 |
0.0226 |
0.0002 |
H2S |
343 |
0.1 |
0.221 |
0.003 |
H2S |
343 |
0.3 |
0.62 |
0.01 |
H2S |
343 |
0.5 |
0.96 |
0.01 |
H2S |
343 |
1.54 |
0.01 |
H2S |
343 |
|
1.5 |
1.87 |
0.01 |
H2S |
343 |
2 |
2.074 |
0.004 |
H2S |
343 |
3 |
2.321 |
0.004 |
H2S |
343 |
4 |
2.46 |
0.01 |
H2S |
343 |
5 |
2.55 |
0.01 |
H2S |
343 |
6 |
2.62 |
0.01 |
H2S |
343 |
7 |
2.665 |
0.003 |
H2S |
343 |
8 |
2.704 |
0.004 |
H2S |
343 |
9 |
2.737 |
0.004 |
H2S |
343 |
10 |
2.762 |
0.003 |
H2S |
343 |
20 |
2.905 |
0.004 |
H2S |
343 |
30 |
2.969 |
0.002 |
H2S |
343 |
40 |
3.005 |
0.002 |
H2S |
343 |
50 |
3.030 |
0.003 |
H2S |
343 |
P [bar] |
Q [mmol/g] |
d Q [mmol/g] |
adsorbate |
T [K] |
0.001 |
0.01 |
0.0003 |
H2S |
298 |
0.01 |
0.098 |
0.001 |
H2S |
298 |
0.1 |
0.90 |
0.01 |
H2S |
298 |
0.3 |
1.91 |
0.01 |
H2S |
298 |
0.5 |
2.28 |
0.01 |
H2S |
298 |
2.61 |
0.01 |
H2S |
298 |
|
1.5 |
2.742 |
0.004 |
H2S |
298 |
2 |
2.810 |
0.005 |
H2S |
298 |
3 |
2.90 |
0.01 |
H2S |
298 |
4 |
2.95 |
0.01 |
H2S |
298 |
5 |
2.983 |
0.004 |
H2S |
298 |
6 |
3.010 |
0.003 |
H2S |
298 |
7 |
3.030 |
0.004 |
H2S |
298 |
8 |
3.050 |
0.004 |
H2S |
298 |
9 |
3.064 |
0.004 |
H2S |
298 |
10 |
3.079 |
0.003 |
H2S |
298 |
0.001 |
0.00226 |
0.00002 |
H2S |
343 |
0.01 |
0.0226 |
0.0002 |
H2S |
343 |
0.1 |
0.221 |
0.003 |
H2S |
343 |
0.3 |
0.62 |
0.01 |
H2S |
343 |
0.5 |
0.96 |
0.01 |
H2S |
343 |
1.54 |
0.01 |
H2S |
343 |
|
1.5 |
1.87 |
0.01 |
H2S |
343 |
2 |
2.074 |
0.004 |
H2S |
343 |
3 |
2.321 |
0.004 |
H2S |
343 |
4 |
2.46 |
0.01 |
H2S |
343 |
5 |
2.55 |
0.01 |
H2S |
343 |
6 |
2.62 |
0.01 |
H2S |
343 |
7 |
2.665 |
0.003 |
H2S |
343 |
8 |
2.704 |
0.004 |
H2S |
343 |
9 |
2.737 |
0.004 |
H2S |
343 |
10 |
2.762 |
0.003 |
H2S |
343 |
20 |
2.905 |
0.004 |
H2S |
343 |
30 |
2.969 |
0.002 |
H2S |
343 |
40 |
3.005 |
0.002 |
H2S |
343 |
50 |
3.030 |
0.003 |
H2S |
343 |
T [K] |
P [bar] |
y H2S [mol/mol] |
dY H2S [mol/mol] |
Q H2S [mmol/g] |
dQ H2S [mmol/g] |
Q CH4 [mmol/g] |
dQ CH4 [mmol/g] |
dH H2S [kJ/mol] |
d dH H2S [kJ/mol] |
dH CH4 [kJ/mol] |
d dH CH4 [kJ/mol] |
298 |
1 |
0.00472 |
0.00002 |
0.0406 |
0.0001 |
0.499 |
0.001 |
-28.5 |
0.2 |
-19.21 |
0.05 |
298 |
1 |
0.00944 |
0.00004 |
0.0816 |
0.0003 |
0.492 |
0.001 |
-28.5 |
0.2 |
-19.22 |
0.02 |
298 |
1 |
0.0141 |
0.0001 |
0.1231 |
0.0005 |
0.483 |
0.001 |
-28.6 |
0.1 |
-19.34 |
0.03 |
298 |
1 |
0.019 |
0.0001 |
0.164 |
0.001 |
0.476 |
0.001 |
-28.6 |
0.1 |
-19.37 |
0.05 |
298 |
1 |
0.0239 |
0.0001 |
0.204 |
0.001 |
0.47 |
0.001 |
-28.5 |
0.1 |
-19.39 |
0.03 |
298 |
1 |
0.0288 |
0.0002 |
0.246 |
0.001 |
0.462 |
0.001 |
-28.6 |
0.1 |
-19.4 |
0.1 |
298 |
1 |
0.0337 |
0.0002 |
0.287 |
0.001 |
0.455 |
0.001 |
-28.7 |
0.1 |
-19.47 |
0.04 |
298 |
1 |
0.0385 |
0.0001 |
0.33 |
0.001 |
0.4473 |
0.0004 |
-28.7 |
0.1 |
-19.53 |
0.04 |
298 |
1 |
0.1038 |
0.0002 |
0.816 |
0.001 |
0.358 |
0.001 |
-29.4 |
0.1 |
-19.88 |
0.04 |
298 |
1 |
0.1665 |
0.0003 |
1.212 |
0.002 |
0.281 |
0.001 |
-30.07 |
0.03 |
-20.43 |
0.05 |
298 |
1 |
0.2421 |
0.0003 |
1.571 |
0.002 |
0.211 |
0.001 |
-30.82 |
0.05 |
-21 |
0.1 |
298 |
1 |
0.3341 |
0.0003 |
1.873 |
0.002 |
0.149 |
0.001 |
-31.4 |
0.1 |
-21.4 |
0.1 |
298 |
1 |
0.4433 |
0.0002 |
2.112 |
0.001 |
0.1 |
0.0002 |
-32 |
0.1 |
-21.9 |
0.1 |
298 |
1 |
0.5673 |
0.0001 |
2.295 |
0.001 |
0.0623 |
0.0002 |
-32.5 |
0.1 |
-22.2 |
0.2 |
298 |
1 |
0.7038 |
0.0001 |
2.429 |
0.001 |
0.0353 |
0.0002 |
-32.8 |
0.1 |
-22.4 |
0.2 |
298 |
1 |
0.84866 |
0.00002 |
2.534 |
0.001 |
0.0151 |
0.0001 |
-33 |
0.1 |
-22.7 |
0.3 |
298 |
10 |
0.00167 |
0.00002 |
0.0633 |
0.0001 |
1.834 |
0.002 |
-29.5 |
0.3 |
-20.19 |
0.03 |
298 |
10 |
0.00339 |
0.00002 |
0.1265 |
0.0001 |
1.796 |
0.002 |
-29.8 |
0.1 |
-20.26 |
0.04 |
298 |
10 |
0.00509 |
0.00001 |
0.1898 |
0.0001 |
1.758 |
0.002 |
-29.9 |
0.1 |
-20.35 |
0.03 |
298 |
10 |
0.0069 |
0.0001 |
0.2525 |
0.0003 |
1.717 |
0.002 |
-29.8 |
0.1 |
-20.4 |
0.1 |
298 |
10 |
0.0088 |
0.0001 |
0.315 |
0.0004 |
1.682 |
0.001 |
-30 |
0.1 |
-20.48 |
0.05 |
298 |
10 |
0.0106 |
0.0001 |
0.3784 |
0.0005 |
1.643 |
0.001 |
-30.3 |
0.2 |
-20.46 |
0.05 |
298 |
10 |
0.0128 |
0.0001 |
0.439 |
0.001 |
1.605 |
0.001 |
-29.9 |
0.1 |
-20.49 |
0.05 |
298 |
10 |
0.0147 |
0.0001 |
0.502 |
0.001 |
1.567 |
0.001 |
-30.2 |
0.1 |
-20.54 |
0.05 |
298 |
10 |
0.043 |
0.0002 |
1.235 |
0.001 |
1.11 |
0.001 |
-31.3 |
0.1 |
-21.3 |
0.1 |
298 |
10 |
0.0807 |
0.0001 |
1.789 |
0.001 |
0.758 |
0.001 |
-32.1 |
0.1 |
-21.9 |
0.1 |
298 |
10 |
0.1415 |
0.0003 |
2.251 |
0.001 |
0.465 |
0.001 |
-32.8 |
0.1 |
-22.3 |
0.1 |
298 |
10 |
0.2364 |
0.0003 |
2.575 |
0.001 |
0.265 |
0.001 |
-33.2 |
0.1 |
-22.7 |
0.1 |
298 |
10 |
0.3628 |
0.0002 |
2.773 |
0.001 |
0.15 |
0.001 |
-33 |
0.1 |
-22.4 |
0.1 |
298 |
10 |
0.5091 |
0.0001 |
2.896 |
0.001 |
0.0844 |
0.0004 |
-33.1 |
0.1 |
-22.7 |
0.1 |
298 |
10 |
0.6667 |
0.0001 |
2.977 |
0.001 |
0.0443 |
0.0004 |
-32.8 |
0.1 |
-22.2 |
0.2 |
298 |
10 |
0.83109 |
0.00004 |
3.035 |
0.001 |
0.018 |
0.0001 |
-32.9 |
0.1 |
-22.5 |
0.4 |
343 |
1 |
0.0079 |
0.00001 |
0.0169 |
0.0001 |
0.2019 |
0.0004 |
-27.8 |
0.2 |
-19.15 |
0.05 |
343 |
1 |
0.01582 |
0.00003 |
0.0338 |
0.0002 |
0.1998 |
0.0003 |
-27.9 |
0.1 |
-19.14 |
0.03 |
343 |
1 |
0.02383 |
0.00002 |
0.0504 |
0.0001 |
0.1978 |
0.0002 |
-28 |
0.1 |
-19.14 |
0.05 |
343 |
1 |
0.03177 |
0.00003 |
0.0677 |
0.0002 |
0.1955 |
0.0002 |
-28 |
0.1 |
-19.22 |
0.03 |
343 |
1 |
0.03976 |
0.00004 |
0.0849 |
0.0003 |
0.1926 |
0.0004 |
-28.1 |
0.1 |
-19.2 |
0.1 |
343 |
1 |
0.0479 |
0.0001 |
0.101 |
0.0004 |
0.1902 |
0.0004 |
-28.1 |
0.1 |
-19.2 |
0.1 |
343 |
1 |
0.0561 |
0.0001 |
0.1176 |
0.0004 |
0.1872 |
0.0003 |
-27.9 |
0.05 |
-19.2 |
0.1 |
343 |
1 |
0.064 |
0.0001 |
0.136 |
0.001 |
0.1853 |
0.0004 |
-28.1 |
0.1 |
-19.34 |
0.05 |
343 |
1 |
0.1643 |
0.0002 |
0.339 |
0.001 |
0.1577 |
0.0001 |
-28.3 |
0.1 |
-19.43 |
0.04 |
343 |
1 |
0.2519 |
0.0001 |
0.509 |
0.001 |
0.1346 |
0.0003 |
-28.47 |
0.04 |
-19.57 |
0.04 |
343 |
1 |
0.344 |
0.0001 |
0.675 |
0.001 |
0.112 |
0.0002 |
-28.75 |
0.05 |
-19.78 |
0.04 |
343 |
1 |
0.4403 |
0.0001 |
0.84 |
0.001 |
0.09 |
0.0002 |
-28.9 |
0.1 |
-19.9 |
0.1 |
343 |
1 |
0.542 |
0 |
0.995 |
0.001 |
0.0695 |
0.0001 |
-29.23 |
0.04 |
-20.11 |
0.03 |
343 |
1 |
0.6487 |
0.0001 |
1.146 |
0.001 |
0.0498 |
0.0001 |
-29.46 |
0.03 |
-20.2 |
0.1 |
343 |
1 |
0.76069 |
0.00004 |
1.285 |
0.001 |
0.0316 |
0.00005 |
-29.74 |
0.02 |
-20.6 |
0.1 |
343 |
1 |
0.87781 |
0.00002 |
1.418 |
0.001 |
0.01502 |
0.00005 |
-29.96 |
0.02 |
-20.6 |
0.2 |
343 |
10 |
0.00368 |
0.00002 |
0.0502 |
0.0001 |
1.191 |
0.001 |
-29 |
0.1 |
-19.84 |
0.04 |
343 |
10 |
0.00743 |
0.00004 |
0.1002 |
0.0003 |
1.169 |
0.001 |
-28.8 |
0.2 |
-19.85 |
0.02 |
343 |
10 |
0.01121 |
0.00004 |
0.1502 |
0.0003 |
1.146 |
0.001 |
-28.8 |
0.2 |
-19.91 |
0.05 |
343 |
10 |
0.0151 |
0.0001 |
0.2 |
0.001 |
1.124 |
0.002 |
-29 |
0.2 |
-19.92 |
0.04 |
343 |
10 |
0.0192 |
0.0001 |
0.248 |
0.001 |
1.102 |
0.001 |
-28.9 |
0.1 |
-20.01 |
0.03 |
343 |
10 |
0.0231 |
0.0001 |
0.298 |
0.001 |
1.079 |
0.001 |
-29 |
0.1 |
-20.06 |
0.04 |
343 |
10 |
0.027 |
0 |
0.3483 |
0.0002 |
1.056 |
0.002 |
-29 |
0.1 |
-20 |
0.1 |
343 |
10 |
0.0313 |
0.0001 |
0.396 |
0.001 |
1.036 |
0.002 |
-29.2 |
0.1 |
-20.05 |
0.02 |
343 |
10 |
0.0867 |
0.0005 |
0.97 |
0.003 |
0.78 |
0.001 |
-30 |
0.1 |
-20.8 |
0.1 |
343 |
10 |
0.1463 |
0.0004 |
1.4 |
0.003 |
0.586 |
0.001 |
-30.8 |
0.1 |
-21.2 |
0.1 |
343 |
10 |
0.2215 |
0.0003 |
1.774 |
0.001 |
0.419 |
0.001 |
-31.4 |
0.1 |
-21.8 |
0.1 |
343 |
10 |
0.3161 |
0.0002 |
2.074 |
0.001 |
0.288 |
0.001 |
-31.9 |
0.1 |
-22.09 |
0.05 |
343 |
10 |
0.4289 |
0.0002 |
2.304 |
0.001 |
0.187 |
0.001 |
-32.3 |
0.04 |
-22.5 |
0.1 |
343 |
10 |
0.5576 |
0.0002 |
2.472 |
0.001 |
0.1171 |
0.0004 |
-32.5 |
0.1 |
-22.7 |
0.1 |
343 |
10 |
0.6977 |
0.0001 |
2.595 |
0.001 |
0.0658 |
0.0004 |
-32.8 |
0.1 |
-22.7 |
0.2 |
343 |
10 |
0.84586 |
0.00004 |
2.69 |
0.001 |
0.028 |
0.0001 |
-33 |
0.1 |
-22.9 |
0.2 |
343 |
50 |
0.00243 |
0.00002 |
0.0599 |
0.0001 |
2.097 |
0.001 |
-28.5 |
0.1 |
-20.06 |
0.04 |
343 |
50 |
0.00488 |
0.00003 |
0.1198 |
0.0002 |
2.055 |
0.001 |
-28.7 |
0.2 |
-20.2 |
0.02 |
343 |
50 |
0.0075 |
0.0001 |
0.1789 |
0.0004 |
2.012 |
0.001 |
-29 |
0.2 |
-20.17 |
0.05 |
343 |
50 |
0.0101 |
0.0001 |
0.2385 |
0.0003 |
1.968 |
0.001 |
-29.1 |
0.2 |
-20.16 |
0.04 |
343 |
50 |
0.0126 |
0.0001 |
0.2979 |
0.0003 |
1.925 |
0.001 |
-28.9 |
0.1 |
-20.21 |
0.03 |
343 |
50 |
0.0154 |
0.0001 |
0.357 |
0.001 |
1.882 |
0.001 |
-29.2 |
0.1 |
-20.25 |
0.04 |
343 |
50 |
0.0183 |
0.0001 |
0.414 |
0.001 |
1.84 |
0.001 |
-29.2 |
0.1 |
-20.3 |
0.1 |
343 |
50 |
0.021 |
0.0002 |
0.474 |
0.001 |
1.798 |
0.001 |
-29.4 |
0.1 |
-20.37 |
0.02 |
343 |
50 |
0.0614 |
0.0004 |
1.152 |
0.002 |
1.306 |
0.002 |
-29.8 |
0.1 |
-20.8 |
0.1 |
343 |
50 |
0.1101 |
0.0002 |
1.657 |
0.001 |
0.941 |
0.001 |
-30.3 |
0.1 |
-21.4 |
0.1 |
343 |
50 |
0.1794 |
0.0002 |
2.081 |
0.001 |
0.637 |
0.001 |
-31 |
0.1 |
-21.8 |
0.1 |
343 |
50 |
0.2746 |
0.0002 |
2.4 |
0.001 |
0.412 |
0.001 |
-31.2 |
0.1 |
-21.96 |
0.05 |
343 |
50 |
0.3939 |
0.0002 |
2.624 |
0.001 |
0.259 |
0.001 |
-30.83 |
0.04 |
-22 |
0.1 |
343 |
50 |
0.5315 |
0.0003 |
2.776 |
0.002 |
0.157 |
0.001 |
-30.9 |
0.1 |
-22.3 |
0.1 |
343 |
50 |
0.6808 |
0.0001 |
2.885 |
0.001 |
0.0887 |
0.0004 |
-30.5 |
0.1 |
-22.1 |
0.2 |
343 |
50 |
0.8379 |
0.0001 |
2.966 |
0.001 |
0.0387 |
0.0002 |
-30.3 |
0.1 |
-23.1 |
0.2 |
298 |
0.001 |
0 |
0 |
0.0006 |
0.00001 |
||||||
298 |
0.01 |
0 |
0 |
0.006 |
0.0001 |
||||||
298 |
0.1 |
0 |
0 |
0.058 |
0.001 |
||||||
298 |
0.3 |
0 |
0 |
0.168 |
0.003 |
||||||
298 |
0.5 |
0 |
0 |
0.274 |
0.005 |
||||||
298 |
1 |
0 |
0 |
0.5 |
0.01 |
||||||
298 |
1.5 |
0 |
0 |
0.7 |
0.01 |
||||||
298 |
2 |
0 |
0 |
0.85 |
0.01 |
||||||
298 |
5 |
0 |
0 |
1.46 |
0.01 |
||||||
298 |
10 |
0 |
0 |
1.88 |
0.01 |
||||||
298 |
12 |
0 |
0 |
1.98 |
0.01 |
||||||
298 |
15 |
0 |
0 |
2.09 |
0.01 |
||||||
298 |
18 |
0 |
0 |
2.18 |
0.01 |
||||||
298 |
20 |
0 |
0 |
2.22 |
0.01 |
||||||
298 |
25 |
0 |
0 |
2.33 |
0.01 |
||||||
298 |
30 |
0 |
0 |
2.39 |
0.01 |
||||||
343 |
0.001 |
0 |
0 |
0.000217 |
0.000001 |
||||||
343 |
0.01 |
0 |
0 |
0.00218 |
0.000001 |
||||||
343 |
0.1 |
0 |
0 |
0.0217 |
0.0001 |
||||||
343 |
0.3 |
0 |
0 |
0.0639 |
0.0003 |
||||||
343 |
0.5 |
0 |
0 |
0.106 |
0.001 |
||||||
343 |
1 |
0 |
0 |
0.204 |
0.001 |
||||||
343 |
1.5 |
0 |
0 |
0.297 |
0.001 |
||||||
343 |
2 |
0 |
0 |
0.379 |
0.001 |
||||||
343 |
5 |
0 |
0 |
0.788 |
0.004 |
||||||
343 |
10 |
0 |
0 |
1.213 |
0.003 |
||||||
343 |
12 |
0 |
0 |
1.327 |
0.003 |
||||||
343 |
15 |
0 |
0 |
1.472 |
0.003 |
||||||
343 |
18 |
0 |
0 |
1.585 |
0.002 |
||||||
343 |
20 |
0 |
0 |
1.643 |
0.003 |
||||||
343 |
25 |
0 |
0 |
1.779 |
0.002 |
||||||
343 |
30 |
0 |
0 |
1.877 |
0.003 |
||||||
343 |
40 |
0 |
0 |
2.032 |
0.002 |
||||||
343 |
50 |
0 |
0 |
2.141 |
0.002 |
||||||
298 |
0.001 |
1 |
0 |
0.01 |
0.0003 |
||||||
298 |
0.01 |
1 |
0 |
0.098 |
0.001 |
||||||
298 |
0.1 |
1 |
0 |
0.9 |
0.01 |
||||||
298 |
0.3 |
1 |
0 |
1.91 |
0.01 |
||||||
298 |
0.5 |
1 |
0 |
2.28 |
0.01 |
||||||
298 |
1 |
1 |
0 |
2.61 |
0.01 |
||||||
298 |
1.5 |
1 |
0 |
2.742 |
0.004 |
||||||
298 |
2 |
1 |
0 |
2.81 |
0.005 |
||||||
298 |
3 |
1 |
0 |
2.9 |
0.01 |
||||||
298 |
4 |
1 |
0 |
2.95 |
0.01 |
||||||
298 |
5 |
1 |
0 |
2.983 |
0.004 |
||||||
298 |
6 |
1 |
0 |
3.01 |
0.003 |
||||||
298 |
7 |
1 |
0 |
3.03 |
0.004 |
||||||
298 |
8 |
1 |
0 |
3.05 |
0.004 |
||||||
298 |
9 |
1 |
0 |
3.064 |
0.004 |
||||||
298 |
10 |
1 |
0 |
3.079 |
0.003 |
||||||
343 |
0.001 |
1 |
0 |
0.00226 |
0.00002 |
||||||
343 |
0.01 |
1 |
0 |
0.0226 |
0.0002 |
||||||
343 |
0.1 |
1 |
0 |
0.221 |
0.003 |
||||||
343 |
0.3 |
1 |
0 |
0.62 |
0.01 |
||||||
343 |
0.5 |
1 |
0 |
0.96 |
0.01 |
||||||
343 |
1 |
1 |
0 |
1.54 |
0.01 |
||||||
343 |
1.5 |
1 |
0 |
1.87 |
0.01 |
||||||
343 |
2 |
1 |
0 |
2.074 |
0.004 |
||||||
343 |
3 |
1 |
0 |
2.321 |
0.004 |
||||||
343 |
4 |
1 |
0 |
2.46 |
0.01 |
||||||
343 |
5 |
1 |
0 |
2.55 |
0.01 |
||||||
343 |
6 |
1 |
0 |
2.62 |
0.01 |
||||||
343 |
7 |
1 |
0 |
2.665 |
0.003 |
||||||
343 |
8 |
1 |
0 |
2.704 |
0.004 |
||||||
343 |
9 |
1 |
0 |
2.737 |
0.004 |
||||||
343 |
10 |
1 |
0 |
2.762 |
0.003 |
||||||
343 |
20 |
1 |
0 |
2.905 |
0.004 |
||||||
343 |
30 |
1 |
0 |
2.969 |
0.002 |
||||||
343 |
40 |
1 |
0 |
3.005 |
0.002 |
||||||
343 |
50 |
1 |
0 |
3.03 |
0.003 |
Fugacity coefficients and fugacities¶
Calculated from :code`RealGas` python package using virial equation of state. The critical temperatures and densities were obtained from the TraPPE website. The accentric factors and critical compressibilities were obtained from DIPPR [RWO+07]. The critical pressure was calculated from all the other critical properties above. The \(k_ij\) parameter was set to 0.
T [K] |
P [bar] |
y H2S [mol/mol] |
dY H2S [mol/mol] |
Q H2S [mmol/g] |
dQ H2S [mmol/g] |
Q CH4 [mmol/g] |
dQ CH4 [mmol/g] |
dH H2S [kJ/mol] |
d dH H2S [kJ/mol] |
dH CH4 [kJ/mol] |
d dH CH4 [kJ/mol] |
fugacity CH4 [Pa] |
fugacity H2S [Pa] |
activity coefficient CH4 |
activity coefficient H2S |
298 |
1.0 |
0.00472 |
2e-05 |
0.0406 |
0.0001 |
0.499 |
0.001 |
-28.5 |
0.2 |
-19.21 |
0.05 |
99354.64683398815 |
467.70268175311554 |
0.9982582472669816 |
0.9908955121888041 |
298 |
1.0 |
0.00944 |
4e-05 |
0.0816 |
0.0003 |
0.49200000000000005 |
0.001 |
-28.5 |
0.2 |
-19.22 |
0.02 |
98883.45755026388 |
935.4204755461337 |
0.9982581322712797 |
0.99091152070565 |
298 |
1.0 |
0.0141 |
0.0001 |
0.1231 |
0.0005 |
0.483 |
0.001 |
-28.6 |
0.1 |
-19.34 |
0.03 |
98418.25065254685 |
1397.2074243643547 |
0.9982579435292306 |
0.9909272513222372 |
298 |
1.0 |
0.019 |
0.0001 |
0.16399999999999998 |
0.001 |
0.47600000000000003 |
0.001 |
-28.6 |
0.1 |
-19.37 |
0.05 |
97929.07688426304 |
1882.7930534842294 |
0.9982576644675131 |
0.9909437123601208 |
298 |
1.0 |
0.0239 |
0.0001 |
0.204 |
0.001 |
0.47 |
0.001 |
-28.5 |
0.1 |
-19.39 |
0.03 |
97439.89532468858 |
2368.3946190505576 |
0.9982573027834093 |
0.9909600916529528 |
298 |
1.0 |
0.0288 |
0.0002 |
0.24600000000000002 |
0.001 |
0.462 |
0.001 |
-28.6 |
0.1 |
-19.4 |
0.1 |
96950.70609528711 |
2854.012000886412 |
0.998256858477009 |
0.9909763891966709 |
298 |
1.0 |
0.0337 |
0.0002 |
0.287 |
0.001 |
0.455 |
0.001 |
-28.7 |
0.1 |
-19.47 |
0.04 |
96461.50931752406 |
3339.6450788069737 |
0.9982563315484224 |
0.9909926049872324 |
298 |
1.0 |
0.0385 |
0.0001 |
0.33 |
0.001 |
0.4473 |
0.0004 |
-28.7 |
0.1 |
-19.53 |
0.04 |
95982.28894558216 |
3815.38238070176 |
0.9982557352634649 |
0.9910084105718858 |
298 |
1.0 |
0.1038 |
0.0002 |
0.816 |
0.001 |
0.358 |
0.001 |
-29.4 |
0.1 |
-19.88 |
0.04 |
89462.24616376412 |
10288.81831126354 |
0.9982397474198184 |
0.9912156369232696 |
298 |
1.0 |
0.1665 |
0.0003 |
1.212 |
0.002 |
0.281 |
0.001 |
-30.07 |
0.03 |
-20.43 |
0.05 |
83200.85252827851 |
16506.825636128993 |
0.9982105882216977 |
0.9914009391068465 |
298 |
1.0 |
0.2421 |
0.0003 |
1.571 |
0.002 |
0.21100000000000002 |
0.001 |
-30.82 |
0.05 |
-21.0 |
0.1 |
75650.35260477995 |
24006.794379045048 |
0.9981574429974925 |
0.9916065418853799 |
298 |
1.0 |
0.3341 |
0.0003 |
1.8730000000000002 |
0.002 |
0.149 |
0.001 |
-31.4 |
0.1 |
-21.4 |
0.1 |
66461.23141587035 |
33137.05514274732 |
0.9980662474225915 |
0.9918304442606202 |
298 |
1.0 |
0.4433 |
0.0002 |
2.112 |
0.001 |
0.1 |
0.0002 |
-32.0 |
0.1 |
-21.9 |
0.1 |
55554.21876296531 |
43977.96231550829 |
0.9979202220758993 |
0.9920587032598306 |
298 |
1.0 |
0.5673 |
0.0001 |
2.295 |
0.001 |
0.0623 |
0.0002 |
-32.5 |
0.1 |
-22.2 |
0.2 |
43170.682549052566 |
56291.392323458014 |
0.9977047041611409 |
0.9922685056135733 |
298 |
1.0 |
0.7038 |
0.0001 |
2.4290000000000003 |
0.001 |
0.0353 |
0.0002 |
-32.8 |
0.1 |
-22.4 |
0.2 |
29543.17708750116 |
69847.83447293856 |
0.9974063837778919 |
0.9924386824799454 |
298 |
1.0 |
0.8486600000000001 |
2e-05 |
2.5340000000000003 |
0.001 |
0.0151 |
0.0001 |
-33.0 |
0.1 |
-22.7 |
0.3 |
15088.898370840641 |
84233.71308811927 |
0.9970198474190993 |
0.9925495850884839 |
298 |
10.0 |
0.0016699999999999998 |
2e-05 |
0.0633 |
0.0001 |
1.834 |
0.002 |
-29.5 |
0.3 |
-20.19 |
0.03 |
981077.5470453583 |
1523.8757940066832 |
0.9827186872530709 |
0.9125004754531038 |
298 |
10.0 |
0.00339 |
2e-05 |
0.1265 |
0.0001 |
1.796 |
0.002 |
-29.8 |
0.1 |
-20.26 |
0.04 |
979387.1239880387 |
3093.5595638865707 |
0.9827185398380899 |
0.9125544436243572 |
298 |
10.0 |
0.00509 |
1e-05 |
0.1898 |
0.0001 |
1.758 |
0.002 |
-29.9 |
0.1 |
-20.35 |
0.03 |
977716.2595347259 |
4645.1731723511175 |
0.9827182956596335 |
0.9126076959432451 |
298 |
10.0 |
0.0069 |
0.0001 |
0.2525 |
0.0003 |
1.7169999999999999 |
0.002 |
-29.8 |
0.1 |
-20.4 |
0.1 |
975937.1743688908 |
6297.383652599459 |
0.9827179280725917 |
0.9126642974781825 |
298 |
10.0 |
0.0088 |
0.0001 |
0.315 |
0.0004 |
1.682 |
0.001 |
-30.0 |
0.1 |
-20.48 |
0.05 |
974069.5094911745 |
8031.967735781164 |
0.9827174228119193 |
0.9127236063387687 |
298 |
10.0 |
0.0106 |
0.0001 |
0.3784 |
0.0005 |
1.643 |
0.001 |
-30.3 |
0.2 |
-20.46 |
0.05 |
972300.0329249608 |
9675.464740041176 |
0.9827168313371345 |
0.9127796924567146 |
298 |
10.0 |
0.0128 |
0.0001 |
0.439 |
0.001 |
1.605 |
0.001 |
-29.9 |
0.1 |
-20.49 |
0.05 |
970137.1950898683 |
11684.45578726241 |
0.9827159593698018 |
0.9128481083798757 |
298 |
10.0 |
0.0147 |
0.0001 |
0.502 |
0.001 |
1.567 |
0.001 |
-30.2 |
0.1 |
-20.54 |
0.05 |
968269.162767907 |
13419.734023255814 |
0.9827150743610139 |
0.9129070764119602 |
298 |
10.0 |
0.043 |
0.0002 |
1.235 |
0.001 |
1.11 |
0.001 |
-31.3 |
0.1 |
-21.3 |
0.1 |
940431.8576733811 |
39292.21234277575 |
0.9826874165866052 |
0.9137723800645523 |
298 |
10.0 |
0.0807 |
0.0001 |
1.7890000000000001 |
0.001 |
0.758 |
0.001 |
-32.1 |
0.1 |
-21.9 |
0.1 |
903311.9315181902 |
73831.39189822483 |
0.9826084319788864 |
0.9148871362853139 |
298 |
10.0 |
0.1415 |
0.0003 |
2.251 |
0.001 |
0.465 |
0.001 |
-32.8 |
0.1 |
-22.3 |
0.1 |
843372.9343998154 |
129697.93604663569 |
0.982379655678294 |
0.9165931876087329 |
298 |
10.0 |
0.2364 |
0.0003 |
2.575 |
0.001 |
0.265 |
0.001 |
-33.2 |
0.1 |
-22.7 |
0.1 |
749681.564622155 |
217258.3049635014 |
0.9817726095104178 |
0.9190283627897691 |
298 |
10.0 |
0.3628 |
0.0002 |
2.773 |
0.001 |
0.15 |
0.001 |
-33.0 |
0.1 |
-22.4 |
0.1 |
624769.3838252344 |
334442.58751575556 |
0.9804918139127972 |
0.9218373415539017 |
298 |
10.0 |
0.5091 |
0.0001 |
2.8960000000000004 |
0.001 |
0.0844 |
0.0004 |
-33.1 |
0.1 |
-22.7 |
0.1 |
480266.3604646813 |
470644.29587924975 |
0.9783384812888191 |
0.9244633586314079 |
298 |
10.0 |
0.6667 |
0.0001 |
2.977 |
0.001 |
0.0443 |
0.0004 |
-32.8 |
0.1 |
-22.2 |
0.2 |
325040.40524152294 |
617721.150628149 |
0.9752187375983286 |
0.9265353991722649 |
298 |
10.0 |
0.83109 |
4e-05 |
3.035 |
0.001 |
0.018000000000000002 |
0.0001 |
-32.9 |
0.1 |
-22.5 |
0.4 |
164026.61381715562 |
771130.8167478166 |
0.971088827287642 |
0.9278547651250967 |
343 |
1.0 |
0.0079 |
1e-05 |
0.0169 |
0.0001 |
0.2019 |
0.0004 |
-27.8 |
0.2 |
-19.15 |
0.05 |
99110.89024172857 |
785.3482956137495 |
0.9990010103994412 |
0.9941117665996828 |
343 |
1.0 |
0.015819999999999997 |
2.9999999999999997e-05 |
0.0338 |
0.0002 |
0.1998 |
0.0003 |
-27.9 |
0.1 |
-19.14 |
0.03 |
98319.66096250119 |
1572.7121075165753 |
0.9990008023176776 |
0.9941290186577595 |
343 |
1.0 |
0.02383 |
2e-05 |
0.0504 |
0.0001 |
0.1978 |
0.0002 |
-28.0 |
0.1 |
-19.14 |
0.05 |
97519.42698024753 |
2369.0506958603496 |
0.9990004505388154 |
0.9941463264206251 |
343 |
1.0 |
0.03177 |
2.9999999999999997e-05 |
0.0677 |
0.0002 |
0.1955 |
0.0002 |
-28.0 |
0.1 |
-19.22 |
0.03 |
96726.17327822208 |
3158.4569427216143 |
0.9989999615610141 |
0.9941633436328657 |
343 |
1.0 |
0.039760000000000004 |
4e-05 |
0.0849 |
0.0003 |
0.1926 |
0.0004 |
-28.1 |
0.1 |
-19.2 |
0.1 |
95927.91152225775 |
3952.860984131869 |
0.9989993285247205 |
0.994180328000973 |
343 |
1.0 |
0.0479 |
0.0001 |
0.10099999999999999 |
0.0004 |
0.1902 |
0.0004 |
-28.1 |
0.1 |
-19.2 |
0.1 |
95114.65081966543 |
4762.20596173629 |
0.9989985381752489 |
0.9941974867925448 |
343 |
1.0 |
0.0561 |
0.0001 |
0.1176 |
0.0004 |
0.1872 |
0.0003 |
-27.9 |
0.05 |
-19.2 |
0.1 |
94295.38285917533 |
5577.544044360629 |
0.9989975935922802 |
0.9942146246632139 |
343 |
1.0 |
0.064 |
0.0001 |
0.136 |
0.001 |
0.1853 |
0.0004 |
-28.1 |
0.1 |
-19.34 |
0.05 |
93506.07639572746 |
6363.078371912866 |
0.998996542689396 |
0.9942309956113853 |
343 |
1.0 |
0.1643 |
0.0002 |
0.33899999999999997 |
0.001 |
0.1577 |
0.0001 |
-28.3 |
0.1 |
-19.43 |
0.04 |
83484.02152096899 |
16338.434006332393 |
0.9989711801001434 |
0.9944269023939374 |
343 |
1.0 |
0.2519 |
0.0001 |
0.509 |
0.001 |
0.1346 |
0.0003 |
-28.47 |
0.04 |
-19.57 |
0.04 |
74730.01306979323 |
25053.46727590841 |
0.9989307989545947 |
0.9945798839185553 |
343 |
1.0 |
0.344 |
0.0001 |
0.675 |
0.001 |
0.11199999999999999 |
0.0002 |
-28.75 |
0.05 |
-19.78 |
0.04 |
65525.87303426274 |
34218.45386724007 |
0.9988700157662003 |
0.9947224961406997 |
343 |
1.0 |
0.4403 |
0.0001 |
0.84 |
0.001 |
0.09 |
0.0002 |
-28.9 |
0.1 |
-19.9 |
0.1 |
55902.0733056576 |
43803.316888868176 |
0.9987863731580775 |
0.9948516213687979 |
343 |
1.0 |
0.542 |
0.0 |
0.995 |
0.001 |
0.0695 |
0.0001 |
-29.23 |
0.04 |
-20.11 |
0.03 |
45739.34939814717 |
53927.14589545035 |
0.9986757510512483 |
0.994965791428973 |
343 |
1.0 |
0.6487 |
0.0001 |
1.146 |
0.001 |
0.0498 |
0.0001 |
-29.46 |
0.03 |
-20.2 |
0.1 |
35078.53753985252 |
64549.610699230274 |
0.9985350851082416 |
0.9950610559462043 |
343 |
1.0 |
0.76069 |
4e-05 |
1.285 |
0.001 |
0.0316 |
5e-05 |
-29.74 |
0.02 |
-20.6 |
0.1 |
23891.761691274674 |
75698.85059828975 |
0.9983603564947002 |
0.995134030923106 |
343 |
1.0 |
0.8778100000000001 |
2e-05 |
1.4180000000000001 |
0.001 |
0.015019999999999999 |
5e-05 |
-29.96 |
0.02 |
-20.6 |
0.2 |
12196.369925855415 |
87357.9610867268 |
0.9981479602140457 |
0.995180746251772 |
343 |
10.0 |
0.0036799999999999997 |
2e-05 |
0.0502 |
0.0001 |
1.1909999999999998 |
0.001 |
-29.0 |
0.1 |
-19.84 |
0.04 |
986412.0261184953 |
3468.642623528989 |
0.9900554301012678 |
0.9425659303067906 |
343 |
10.0 |
0.00743 |
4e-05 |
0.1002 |
0.0003 |
1.169 |
0.001 |
-28.8 |
0.2 |
-19.85 |
0.02 |
982698.8643201104 |
7003.844009180555 |
0.9900549727677751 |
0.9426438774132645 |
343 |
10.0 |
0.01121 |
4e-05 |
0.1502 |
0.0003 |
1.146 |
0.001 |
-28.8 |
0.2 |
-19.91 |
0.05 |
978955.6917559687 |
10567.915381225455 |
0.9900541993304633 |
0.9427221571119943 |
343 |
10.0 |
0.0151 |
0.0001 |
0.2 |
0.001 |
1.124 |
0.002 |
-29.0 |
0.2 |
-19.92 |
0.04 |
975103.2744252512 |
14236.316386376398 |
0.9900530758709017 |
0.9428024096938011 |
343 |
10.0 |
0.0192 |
0.0001 |
0.248 |
0.001 |
1.102 |
0.001 |
-28.9 |
0.1 |
-20.01 |
0.03 |
971042.5427480503 |
18103.423864423006 |
0.9900515321656304 |
0.942886659605365 |
343 |
10.0 |
0.0231 |
0.0001 |
0.298 |
0.001 |
1.079 |
0.001 |
-29.0 |
0.1 |
-20.06 |
0.04 |
967179.5727199535 |
21782.52570083111 |
0.9900497212815574 |
0.9429664805554593 |
343 |
10.0 |
0.027000000000000003 |
0.0 |
0.3483 |
0.0002 |
1.056 |
0.002 |
-29.0 |
0.1 |
-20.0 |
0.1 |
963316.2919149265 |
25462.241735252624 |
0.9900475764798834 |
0.9430459901945416 |
343 |
10.0 |
0.0313 |
0.0001 |
0.396 |
0.001 |
1.036 |
0.002 |
-29.2 |
0.1 |
-20.05 |
0.02 |
959056.4216436056 |
29520.072093756335 |
0.9900448246553171 |
0.9431332937302342 |
343 |
10.0 |
0.0867 |
0.0005 |
0.97 |
0.003 |
0.78 |
0.001 |
-30.0 |
0.1 |
-20.8 |
0.1 |
904142.4034608224 |
81864.23690740153 |
0.9899730684997509 |
0.944224185783178 |
343 |
10.0 |
0.1463 |
0.0004 |
1.4 |
0.003 |
0.586 |
0.001 |
-30.8 |
0.1 |
-21.2 |
0.1 |
845009.8940832004 |
138301.39116035856 |
0.9898206560655972 |
0.9453273490113365 |
343 |
10.0 |
0.2215 |
0.0003 |
1.774 |
0.001 |
0.419 |
0.001 |
-31.4 |
0.1 |
-21.8 |
0.1 |
770339.1119457926 |
209675.15623515385 |
0.9895171637068626 |
0.9466147008359089 |
343 |
10.0 |
0.3161 |
0.0002 |
2.074 |
0.001 |
0.28800000000000003 |
0.001 |
-31.9 |
0.1 |
-22.09 |
0.05 |
676349.3079143139 |
299684.2280836276 |
0.9889593623546045 |
0.9480677889390308 |
343 |
10.0 |
0.4289 |
0.0002 |
2.3040000000000003 |
0.001 |
0.187 |
0.001 |
-32.3 |
0.04 |
-22.5 |
0.1 |
564268.6964458781 |
407265.0048124523 |
0.988038340826262 |
0.9495570175156267 |
343 |
10.0 |
0.5576 |
0.0002 |
2.472 |
0.001 |
0.1171 |
0.0004 |
-32.5 |
0.1 |
-22.7 |
0.1 |
436493.2864851499 |
530239.2746809563 |
0.9866484775884943 |
0.9509312673618298 |
343 |
10.0 |
0.6977 |
0.0001 |
2.595 |
0.001 |
0.0658 |
0.0004 |
-32.8 |
0.1 |
-22.7 |
0.2 |
297682.8146374437 |
664232.6667354767 |
0.9847264791182391 |
0.9520319144839855 |
343 |
10.0 |
0.8458600000000001 |
4e-05 |
2.69 |
0.001 |
0.027999999999999997 |
0.0001 |
-33.0 |
0.1 |
-22.9 |
0.2 |
151401.35731376952 |
805889.7413609043 |
0.9822327579717761 |
0.9527460115869106 |
343 |
50.0 |
0.00243 |
2e-05 |
0.0599 |
0.0001 |
2.097 |
0.001 |
-28.5 |
0.1 |
-20.06 |
0.04 |
4744725.791674324 |
9038.054612506701 |
0.9512567121453781 |
0.7438728076137203 |
343 |
50.0 |
0.00488 |
2.9999999999999997e-05 |
0.1198 |
0.0002 |
2.055 |
0.001 |
-28.7 |
0.2 |
-20.2 |
0.02 |
4733068.197742039 |
18155.409558026655 |
0.9512557676947584 |
0.7440741622142072 |
343 |
50.0 |
0.0075 |
0.0001 |
0.1789 |
0.0004 |
2.012 |
0.001 |
-29.0 |
0.2 |
-20.17 |
0.05 |
4720598.25894536 |
27910.837521734065 |
0.9512540572182085 |
0.7442890005795751 |
343 |
50.0 |
0.0101 |
0.0001 |
0.2385 |
0.0003 |
1.9680000000000002 |
0.001 |
-29.1 |
0.2 |
-20.16 |
0.04 |
4708220.012427124 |
37597.33585631338 |
0.9512516440907414 |
0.7445017001250175 |
343 |
50.0 |
0.0126 |
0.0001 |
0.2979 |
0.0003 |
1.925 |
0.001 |
-28.9 |
0.1 |
-20.21 |
0.03 |
4696314.592062534 |
46916.46224170486 |
0.9512486514204038 |
0.744705749868331 |
343 |
50.0 |
0.0154 |
0.0001 |
0.35700000000000004 |
0.001 |
1.882 |
0.001 |
-29.2 |
0.1 |
-20.25 |
0.04 |
4682976.757527794 |
57359.89791314146 |
0.9512445170684123 |
0.7449337391317072 |
343 |
50.0 |
0.0183 |
0.0001 |
0.414 |
0.001 |
1.84 |
0.001 |
-29.2 |
0.1 |
-20.3 |
0.1 |
4669158.415208578 |
68182.98743634831 |
0.9512393633917853 |
0.745169261599435 |
343 |
50.0 |
0.021 |
0.0002 |
0.474 |
0.001 |
1.798 |
0.001 |
-29.4 |
0.1 |
-20.37 |
0.02 |
4656289.293563722 |
78265.73824523445 |
0.9512337678373283 |
0.745387983287947 |
343 |
50.0 |
0.0614 |
0.0004 |
1.1520000000000001 |
0.002 |
1.306 |
0.002 |
-29.8 |
0.1 |
-20.8 |
0.1 |
4463316.305076584 |
229819.00908587684 |
0.9510582367518824 |
0.7485961208009018 |
343 |
50.0 |
0.1101 |
0.0002 |
1.6569999999999998 |
0.001 |
0.941 |
0.001 |
-30.3 |
0.1 |
-21.4 |
0.1 |
4229774.738500736 |
414141.5507812322 |
0.9506179882010868 |
0.7523007280313028 |
343 |
50.0 |
0.1794 |
0.0002 |
2.081 |
0.001 |
0.637 |
0.001 |
-31.0 |
0.1 |
-21.8 |
0.1 |
3896050.0362489764 |
679262.7923860186 |
0.9495613054469842 |
0.7572606381115033 |
343 |
50.0 |
0.2746 |
0.0002 |
2.4 |
0.001 |
0.41200000000000003 |
0.001 |
-31.2 |
0.1 |
-21.96 |
0.05 |
3435816.686986997 |
1048236.7764820578 |
0.947288857730079 |
0.7634645130969102 |
343 |
50.0 |
0.3939 |
0.0002 |
2.6239999999999997 |
0.001 |
0.259 |
0.001 |
-30.83 |
0.04 |
-22.0 |
0.1 |
2858094.701124538 |
1516942.951154272 |
0.943109949224398 |
0.7702172892380158 |
343 |
50.0 |
0.5315 |
0.0003 |
2.7760000000000002 |
0.002 |
0.157 |
0.001 |
-30.9 |
0.1 |
-22.3 |
0.1 |
2193694.8712352514 |
2063699.7841704178 |
0.9364759322242269 |
0.7765568331779559 |
343 |
50.0 |
0.6808 |
0.0001 |
2.885 |
0.001 |
0.0887 |
0.0004 |
-30.5 |
0.1 |
-22.1 |
0.2 |
1479693.8057825833 |
2660689.587876201 |
0.9271264447259293 |
0.7816361891528205 |
343 |
50.0 |
0.8379 |
0.0001 |
2.966 |
0.001 |
0.0387 |
0.0002 |
-30.3 |
0.1 |
-23.1 |
0.2 |
741562.5205293724 |
3288420.039826111 |
0.9149445040461102 |
0.7849194509669677 |
298 |
0.001 |
0.0 |
0.0 |
0.0006 |
1e-05 |
99.99982567685703 |
0.0 |
0.9999982567685702 |
|||||||
298 |
0.01 |
0.0 |
0.0 |
0.006 |
0.0001 |
999.9825678224506 |
0.0 |
0.9999825678224507 |
|||||||
298 |
0.1 |
0.0 |
0.0 |
0.057999999999999996 |
0.001 |
9998.256918985078 |
0.0 |
0.9998256918985078 |
|||||||
298 |
0.3 |
0.0 |
0.0 |
0.168 |
0.003 |
29984.315005205095 |
0.0 |
0.9994771668401699 |
|||||||
298 |
0.5 |
0.0 |
0.0 |
0.27399999999999997 |
0.005 |
49956.43816363626 |
0.0 |
0.9991287632727252 |
|||||||
298 |
1.0 |
0.0 |
0.0 |
0.5 |
0.01 |
99825.82855988853 |
0.0 |
0.9982582855988853 |
|||||||
298 |
1.5 |
0.0 |
0.0 |
0.7 |
0.01 |
149608.28494757478 |
0.0 |
0.9973885663171651 |
|||||||
298 |
2.0 |
0.0 |
0.0 |
0.85 |
0.01 |
199303.9209533651 |
0.0 |
0.9965196047668256 |
|||||||
298 |
5.0 |
0.0 |
0.0 |
1.46 |
0.01 |
495660.8554474322 |
0.0 |
0.9913217108948644 |
|||||||
298 |
10.0 |
0.0 |
0.0 |
1.88 |
0.01 |
982718.7344915213 |
0.0 |
0.9827187344915213 |
|||||||
298 |
12.0 |
0.0 |
0.0 |
1.98 |
0.01 |
1175158.181870935 |
0.0 |
0.9792984848924458 |
|||||||
298 |
15.0 |
0.0 |
0.0 |
2.09 |
0.01 |
1461285.6258068562 |
0.0 |
0.9741904172045708 |
|||||||
298 |
18.0 |
0.0 |
0.0 |
2.18 |
0.01 |
1744396.188195273 |
0.0 |
0.9691089934418183 |
|||||||
298 |
20.0 |
0.0 |
0.0 |
2.22 |
0.01 |
1931472.222241234 |
0.0 |
0.965736111120617 |
|||||||
298 |
25.0 |
0.0 |
0.0 |
2.33 |
0.01 |
2393387.9348726072 |
0.0 |
0.9573551739490429 |
|||||||
298 |
30.0 |
0.0 |
0.0 |
2.39 |
0.01 |
2847140.906919647 |
0.0 |
0.9490469689732157 |
|||||||
343 |
0.001 |
0.0 |
0.0 |
0.000217 |
1e-06 |
99.99990005807724 |
0.0 |
0.9999990005807724 |
|||||||
343 |
0.01 |
0.0 |
0.0 |
0.00218 |
1e-06 |
999.9900058526717 |
0.0 |
0.9999900058526717 |
|||||||
343 |
0.1 |
0.0 |
0.0 |
0.0217 |
0.0001 |
9999.000630213317 |
0.0 |
0.9999000630213316 |
|||||||
343 |
0.3 |
0.0 |
0.0 |
0.0639 |
0.0003 |
29991.00657075588 |
0.0 |
0.9997002190251959 |
|||||||
343 |
0.5 |
0.0 |
0.0 |
0.106 |
0.001 |
49975.02074853373 |
0.0 |
0.9995004149706745 |
|||||||
343 |
1.0 |
0.0 |
0.0 |
0.204 |
0.001 |
99900.10795265506 |
0.0 |
0.9990010795265506 |
|||||||
343 |
1.5 |
0.0 |
0.0 |
0.297 |
0.001 |
149775.2990314409 |
0.0 |
0.9985019935429392 |
|||||||
343 |
2.0 |
0.0 |
0.0 |
0.379 |
0.001 |
199600.63137904272 |
0.0 |
0.9980031568952136 |
|||||||
343 |
5.0 |
0.0 |
0.0 |
0.7879999999999999 |
0.004 |
497507.6830456021 |
0.0 |
0.9950153660912042 |
|||||||
343 |
10.0 |
0.0 |
0.0 |
1.213 |
0.003 |
990055.5787576132 |
0.0 |
0.9900555787576132 |
|||||||
343 |
12.0 |
0.0 |
0.0 |
1.327 |
0.003 |
1185694.311722179 |
0.0 |
0.9880785931018158 |
|||||||
343 |
15.0 |
0.0 |
0.0 |
1.472 |
0.003 |
1477680.7712222184 |
0.0 |
0.9851205141481456 |
|||||||
343 |
18.0 |
0.0 |
0.0 |
1.585 |
0.002 |
1767908.3237986022 |
0.0 |
0.9821712909992235 |
|||||||
343 |
20.0 |
0.0 |
0.0 |
1.643 |
0.003 |
1960420.098058145 |
0.0 |
0.9802100490290725 |
|||||||
343 |
25.0 |
0.0 |
0.0 |
1.7790000000000001 |
0.002 |
2438310.1519523496 |
0.0 |
0.9753240607809398 |
|||||||
343 |
30.0 |
0.0 |
0.0 |
1.8769999999999998 |
0.003 |
2911387.2821865203 |
0.0 |
0.9704624273955068 |
|||||||
343 |
40.0 |
0.0 |
0.0 |
2.032 |
0.002 |
3843246.9608703065 |
0.0 |
0.9608117402175766 |
|||||||
343 |
50.0 |
0.0 |
0.0 |
2.141 |
0.002 |
4756285.117691112 |
0.0 |
0.9512570235382224 |
|||||||
298 |
0.001 |
1.0 |
0.0 |
0.01 |
0.0003 |
0.0 |
99.99925611964946 |
0.9999925611964946 |
|||||||
298 |
0.01 |
1.0 |
0.0 |
0.098 |
0.001 |
0.0 |
999.9256144550077 |
0.9999256144550077 |
|||||||
298 |
0.1 |
1.0 |
0.0 |
0.9 |
0.01 |
0.0 |
9992.563934951111 |
0.9992563934951112 |
|||||||
298 |
0.3 |
1.0 |
0.0 |
1.91 |
0.01 |
0.0 |
29933.125167781745 |
0.9977708389260582 |
|||||||
298 |
0.5 |
1.0 |
0.0 |
2.28 |
0.01 |
0.0 |
49814.37464358243 |
0.9962874928716486 |
|||||||
298 |
1.0 |
1.0 |
0.0 |
2.61 |
0.01 |
0.0 |
99258.87684524755 |
0.9925887684524755 |
|||||||
298 |
1.5 |
1.0 |
0.0 |
2.742 |
0.004 |
0.0 |
148335.56633611114 |
0.9889037755740742 |
|||||||
298 |
2.0 |
1.0 |
0.0 |
2.81 |
0.005 |
0.0 |
197046.4926516004 |
0.985232463258002 |
|||||||
298 |
3.0 |
1.0 |
0.0 |
2.9 |
0.01 |
0.0 |
293379.2032033977 |
0.9779306773446589 |
|||||||
298 |
4.0 |
1.0 |
0.0 |
2.95 |
0.01 |
0.0 |
388273.20266297203 |
0.9706830066574301 |
|||||||
298 |
5.0 |
1.0 |
0.0 |
2.983 |
0.004 |
0.0 |
481744.52506792225 |
0.9634890501358445 |
|||||||
298 |
6.0 |
1.0 |
0.0 |
3.01 |
0.003 |
0.0 |
573809.04581507 |
0.9563484096917834 |
|||||||
298 |
7.0 |
1.0 |
0.0 |
3.03 |
0.004 |
0.0 |
664482.4831312154 |
0.9492606901874506 |
|||||||
298 |
8.0 |
1.0 |
0.0 |
3.05 |
0.004 |
0.0 |
753780.3995308068 |
0.9422254994135085 |
|||||||
298 |
9.0 |
1.0 |
0.0 |
3.0639999999999996 |
0.004 |
0.0 |
841718.2032606357 |
0.935242448067373 |
|||||||
298 |
10.0 |
1.0 |
0.0 |
3.0789999999999997 |
0.003 |
0.0 |
928311.1497316719 |
0.928311149731672 |
|||||||
343 |
0.001 |
1.0 |
0.0 |
0.0022600000000000003 |
2e-05 |
0.0 |
99.99951856616649 |
0.9999951856616649 |
|||||||
343 |
0.01 |
1.0 |
0.0 |
0.0226 |
0.0002 |
0.0 |
999.9518576596396 |
0.9999518576596396 |
|||||||
343 |
0.1 |
1.0 |
0.0 |
0.221 |
0.003 |
0.0 |
9995.18680878829 |
0.9995186808788291 |
|||||||
343 |
0.3 |
1.0 |
0.0 |
0.62 |
0.01 |
0.0 |
29956.702125878106 |
0.9985567375292702 |
|||||||
343 |
0.5 |
1.0 |
0.0 |
0.96 |
0.01 |
0.0 |
49879.785998015745 |
0.9975957199603149 |
|||||||
343 |
1.0 |
1.0 |
0.0 |
1.54 |
0.01 |
0.0 |
99519.72204831392 |
0.9951972204831392 |
|||||||
343 |
1.5 |
1.0 |
0.0 |
1.87 |
0.01 |
0.0 |
148920.67315055724 |
0.9928044876703815 |
|||||||
343 |
2.0 |
1.0 |
0.0 |
2.074 |
0.004 |
0.0 |
198083.5015314732 |
0.9904175076573659 |
|||||||
343 |
3.0 |
1.0 |
0.0 |
2.3209999999999997 |
0.004 |
0.0 |
295698.22522153467 |
0.9856607507384488 |
|||||||
343 |
4.0 |
1.0 |
0.0 |
2.46 |
0.01 |
0.0 |
392370.7357896914 |
0.9809268394742285 |
|||||||
343 |
5.0 |
1.0 |
0.0 |
2.55 |
0.01 |
0.0 |
488107.8320710314 |
0.9762156641420627 |
|||||||
343 |
6.0 |
1.0 |
0.0 |
2.62 |
0.01 |
0.0 |
582916.2693277695 |
0.9715271155462826 |
|||||||
343 |
7.0 |
1.0 |
0.0 |
2.665 |
0.003 |
0.0 |
676802.7595109635 |
0.966861085015662 |
|||||||
343 |
8.0 |
1.0 |
0.0 |
2.7039999999999997 |
0.004 |
0.0 |
769773.9715207191 |
0.962217464400899 |
|||||||
343 |
9.0 |
1.0 |
0.0 |
2.737 |
0.004 |
0.0 |
861836.5314648978 |
0.9575961460721086 |
|||||||
343 |
10.0 |
1.0 |
0.0 |
2.762 |
0.003 |
0.0 |
952997.0229163286 |
0.9529970229163286 |
|||||||
343 |
20.0 |
1.0 |
0.0 |
2.905 |
0.004 |
0.0 |
1816406.6513747708 |
0.9082033256873854 |
|||||||
343 |
30.0 |
1.0 |
0.0 |
2.969 |
0.002 |
0.0 |
2596545.196748361 |
0.865515065582787 |
|||||||
343 |
40.0 |
1.0 |
0.0 |
3.005 |
0.002 |
0.0 |
3299333.1231585075 |
0.8248332807896269 |
|||||||
343 |
50.0 |
1.0 |
0.0 |
3.03 |
0.003 |
0.0 |
3930318.304974113 |
0.7860636609948226 |
References¶
- PXSL14
T D Pham, R Xiong, S I Sandler, and R F Lobo. Experimental and Computational Studies on the Adsorption o CO$_2$ and N$_2$ on Pure Silica Zeolites. Microporous and Mesoporous Materials, 185:157–166, 2014. doi:10.1016/j.micromeso.2013.10.030.
- RWO+07
R L Rowley, W V Wilding, J L Oscarson, Y Yang, N A Zundel, T E Daubert, and R P Danner. DIPPR$^\mathrm ®$ Data Compilation of Pure Chemical Properties, Design Institute for Physical Properties. In Design Institute for Physical Properties of the American Institute of Chemical Engineers. AIChE, New York, 2007.
- STS15
M S Shah, M Tsapatsis, and J Ilja Siepmann. Monte Carlo Simulations Probing the Adsorptive Separation of Hydrogen Sulfide/Methane Mixtures Using All-Silica Zeolites. Langmuir, 31:12268–12278, 2015. doi:10.1021/acs.langmuir.5b03015.
- TM88
O Talu and A L Myers. Rigorous Thermodynamic Treatment of Gas Adsorption. AIChE J., 34:1887–1893, 1988. doi:10.1002/aic.690341114.